LAS TORRES DE HANOI
Se trata de colocar la disposición inicial de los discos en otro poste con la condición de no situar un disco sobre otro más pequeño.
Las Torres de Hanoi es un juego matemático que consiste en tres varillas verticales y un número indeterminado de discos que determinarán la complejidad de la solución. No hay dos discos iguales, están colocados de mayor a menor en una varilla ascendentemente, y no se puede colocar ningún disco mayor sobre uno menor a él en ningún momento. El juego consiste en pasar todos los discos a otra varilla colocados de mayor a menor ascendentemente.
Leyenda: Dios al crear el mundo, colocó tres varillas de diamante con 64 discos en la primera. También creó un monasterio con monjes, los cuales tienen la tarea de resolver esta Torre de Hanoi divina. El día que estos monjes consigan terminar el juego, el mundo acabará. El mínimo número de movimientos que se necesita para resolver este problema es de 264-1. Si los monjes hicieran un movimiento por segundo, los 64 discos estarían en la tercera varilla en poco menos de 585 mil millones de años. Como comparación para ver la magnitud de esta cifra, la Tierra tiene como 5 mil millones de años, y el Universo entre 15 y 20 mil millones de años de antigüedad, sólo una pequeña fracción de esa cifra.
Resolución: el problema de las Torres de Hanoi es curioso porque su solución se puede calcular en forma rápida, pero el número de pasos para resolverlo crece exponencialmente conforme aumenta el número de discos. Para obtener la solución más corta, es necesario mover el disco más pequeño en todos los pasos impares, mientras que en los pasos pares sólo existe un movimiento posible que no lo incluye. El problema se reduce a decidir en cada paso impar a cuál de las dos pilas posibles se desplazará el disco pequeño:
El algoritmo en cuestión depende del número de discos del problema.
• Si inicialmente se tiene un número impar de discos, el primer movimiento debe ser colocar el disco más pequeño en la pila destino, y en cada paso impar se le mueve a la siguiente pila a su izquierda (o a la pila destino, si está en la pila origen).
La secuencia será DESTINO, AUXILIAR, ORIGEN, DESTINO, AUXILIAR, ORIGEN, etc.
• Si se tiene inicialmente un número par de discos, el primer movimiento debe ser colocar el disco más pequeño en la pila auxiliar, y en cada paso impar se le mueve a la siguiente pila a su derecha (o a la pila origen, si está en la pila destino).
La secuencia será AUXILIAR, DESTINO, ORIGEN, AUXILIAR, DESTINO, ORIGEN, etc.
¿Alguien es capaz de dar con la fórmula matemática para saber cuántos movimientos se deben dar para resolverlo?
PUES SI, ES ESTA:
M = 2 elevado a "n" y a todo ello le restas 1 ;donde M es el número de movimientos y n es el número de discos.
El sabio uso del ocio es un producto de la civilización y de la educación (Bertrand Russel). La familia, la escuela y los medios de comunicación social han de preparar a las personas para convivir, colaborar y ser solidarios.